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Abstract- In this paper we present the use of a 3R Lego robotic 
arm for teaching basic robotic concepts. The Lego Mindstorms 
NXT kit is an affordable equipment that can be used to better 
visualize robotic concepts usually taught in classes. The 3R 
Lego Robot has 2 degrees of freedom and has been equiped 
with an accelerometer located at the end-effector to collect 
acceleration data in the x, y and z axes. Additionally, a 
gyroscope was placed at the joint for the up and down 
movement. This allowed for obtaining a plant for the 3R Lego 
Robot in order to understand the inverse and forward 
kinematics as well as the physical representation of Denavit-
Hartenberg (DH) parameters, velocity manipulability ellipsoids 
and trajectory planning. This is essential and key in the study of 
plants that is relevant to everyday use in the industry and 
academia. This will allow professors at the university to teach 
more easily with hands-on approach. The Lego product is cost 
efficient and new programmable blocks can be built and 
incorporated into Simulink models. Therefore, this can be 
extended to more complex analysis and feedback control. This 
will lead to better analysis of the system and provide the 
students with higher education of what they have learned in 
class. Furthermore, students will be more competitive to obtain 
jobs in industry by combining theoretical with experimental 
approach. Traditionally, industry core concepts are not taught 
in the class and may be incorporated with the 3R Lego robot 
for resume building and skill set application. Some papers 
indicate the use of different programming languages for the 
Lego Robots; however, none of them have the capabilities and 
potential of Matlab and Simulink. Additionally, some others 
have presented simulation work to teach robotic-related 
concepts, but they either lack the hands-on approach or the 
hardware utilized is expensive. The importance of this study 
lies on understanding and implementing basic robotic concepts 
in Matlab and Simulink together with a 3R Lego robot. 
Therefore, a more complex Simulink model can be developed 

for controller design purposes. This paper describes a 
comparison of a simulation model versus a real life system for 
helping students to understand modeling system theories 
versus real world applications.  
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1. Introduction
As technology advances, engineers have always 

been interested in mimicking animal or human-like 
behaviors using robots. A great motivation to study 
robotics is how often they are used in industrial 
applications. Someone would be hard-pressed to find 
any factory that does not heavily depend on robots to 
function. They are faster, more precise, and less 
expensive in the long run when compared to their 
human counterparts. Robots are capable of performing 
a variety of different tasks. In addition, they do not need 
common safety and comfort requirements that humans 
need in order to continuously perform them. 
Furthermore, as long as the robots are intuitively 
designed, they can be adapted and used in the future for 
different maneuvers as well. However, understanding 
how these apparatus work in real life constitute an 
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important component in robotics-related classes. 
Although robotics concepts are often taught in many 
books [1], [2], [3], they become hard to visualize in a 
three-dimensional space. To cope with this problem, 
some simulating programs have been proposed in the 
recent years. RoboAnalyzer [4] emerged as an attempt 
to perform forward kinematics and show animations 
based on the DH parameters of a KUKA KR5 robot [5]. 
In a later version, features such as transformations, 
import of a 3D CAD model and inverse kinematics were 
also included [6]. Other platforms such as ROBOMOSP 
[7], RoboWorks [8] and Easy-Rob [9] have been created 
with the same purpose. In the same matter, a Matlab 
GUI was developed to simulate and learn the basic 
concepts of robot dynamics [10]. They include the 
selection of well-known manipulators like Puma, 
Stanford and Scara by changing the link masses, inertias 
and the Denavit-Hartenberg (DH) parameters. The 
importance on the latter lies on the fact that they are 
typically used to represent the architecture of a robotic 
arm and are usually provided by its manufacturer [11]. 
The DH parameters were used to define different 
configurations of a FANUC LR Mate 200iB robot and 
compared to the results provided by an open software 
for the synthesis, analysis, simulation and control of the 
same robot [12]. Nonetheless, although they allow to 
have a better understanding of real physical systems, 
they become expensive for educational purposes.  

Recent studies demonstrate the extended use of 
Lego NXT kits for educational purposes [13], [14]. While 
most of them have been used for controller design [15], 
[16], [17] and signal processing manipulation [18], the 
number of articles found for teaching basic robotic 
concepts is lacking. In this matter, a 3 degrees of 
freedom (DOF) drawing robot has been proposed [19] 
using Lego NXT and LejOS [20], a program that allowed 
to have a better resolution for the position of the motor 
axle compared to the NXT default operating system. 
Additionally, a robotic arm through the use of Lego 
Mindstorms NXT kits and the Not Quite C (NQC) 
language have been developed [21]. Yet, none of them 
use Matlab and Simulink to study and control the 
robotic arm; therefore, they limit the research scope 
that can be developed with the use of Lego NXT kits. 
Matlab and Simulink constitute a powerful environment 
that allows the use of toolboxes such as robotics [22], 
system identification [23], control system tuning [24] 
and optimization [25] that leads to a better 
understanding of control systems and robotics.  

Our goal is to build and program a robotic arm 

using critical robotic concepts. This includes forward 
and inverse kinematic equations, DH parameters, force 
and velocity manipulability ellipsoids with the use of 
Simulink and Matlab. The Lego Mindstorms NXT kit 
allows for a comparison between simulation and real 
data. This will allow a future integration of more 
advanced control-related concepts through the use of 
existent Matlab toolboxes.  
 
2. Methods  

In order to control the robot arm to accomplish 
the task, several analyses were needed including the 
forward and inverse kinematics, the workspace, 
trajectory planning and the force and velocity 
manipulability ellipsoids at the end-effector throughout 
all the configurations. The manipulator constituted by 4 
links (including the base) connected by 3 joints. The aim 
of forward kinematics is to determine the end-effector 
position and the orientation as a function of the joint 
angles. It was illustrated in class that the position and 
orientation of a body with respect to a reference frame 
are described by the position vector of the origin and 
the unit vectors of the frame attached to the body. 
Hence, with respect to the base frame, the forward 
kinematics function can be expressed by the 
homogeneous transformation matrix.  
 
2.1. DH Convention 

 Figure 1. The kinematic model of the Lego robot arm 

 
Since the manipulator structure is an open 

kinematic chain, each joint connects two and only two 
consecutive links. Therefore, it is reasonable to first 
describe the kinematic relationship between 
consecutive links and then to obtain the overall 
description of the manipulator kinematics in a recursive 
fashion [1]. To this purpose, the Denavit-Hartenberg 
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(DH) convention was used to construct the direct 
kinematics function by composition of the individual 
coordinate transformations expressed by Eq. 1.  
 

 

(1) 

 
The frame for each link was defined as shown in 

Fig. 1. Therefore, the coordinate transformation de-
scribing the position and orientation of the end-effector 
frame with respect to the base frame is given by Eq.  
2.  
 

 
(2) 

 
Therefore, the homogeneous transformation 

matrix for this manipulator is shown below.  
 

 

(3) 

 
Consider the arm in Fig. 1, where the base and the 

link frames have been illustrated. The axes xi were 
chosen to minimize the calculation. The DH parameters 
are specified in the table 1. It is worth pointing out that 
the frame 3 does not coincide with the end-effector 
frame and the end-effector frame can differ due to the 
different tasks.  
 

Table 1. Lego arm D-H parameters 

i αi ai di θi 
1 0 0 0 0 
2 -90° L1 = 95.32mm d = 24.7mm Θ1 
3 0 L2 = 201.75mm 0 Θ2 - 90° 
4 0 L3 = 61.05mm 0 Θ3 - 180° 

 
2.2. Forward Kinematics  

If the task is to be specified for the end-effector, it 
is necessary to assign the end-effector position as a 
function of time. On the other hand, the joint space 
denoted the space in the vector of the joint variables 
(θ1, θ2 and θ3). Accounting for the dependence of 
position from the joint variables, the forward 

kinematics equation can be written in the form of Eq. 4 
which is obtained from Eq. 3.  
 

 

(4) 

 
This expression shows three joint space variables 

that allow specifications of at most three independent 
operational space variables. On the other hand, the 
orientation is not a concern, thus all joint angles can be 
fully defined given a position of the end-effector.  
 

2.3. Inverse Kinematics  
The inverse kinematics problem consists of the 

determination of the joint variables corresponding to a 
given end-effector position. The solution to this 
problem is of fundamental importance in order to 
transform the motion specifications, assigned to the 
end-effector in the operational space, into the 
corresponding joint space motions that allow execution 
of the desired motion. As mentioned above, the 
manipulator is not a redundant structure, it is easy to 
compute the closed-form solution for the inverse 
kinematics based on Eq. 3. Therefore, the solution for 
the inverse kinematics can be obtained as:  
 

 
(5) 

 

 
(6) 

 

 (7) 
 

2.4. Workspace 
The workspace is the region described by the 

origin of the end-effector frame when all the 
manipulator joints execute all possible motions [3]. 
Since the manipulator has less than 6 degrees of 
freedom (DOFs), it cannot take any arbitrary position 
and orientation in space. Therefore, it is necessary to 
compute its workspace to guarantee all the positions 
along the path are reachable for the manipulator. In 
order to simplify the calculation, we chose the end-
effector as the center of the third joint and the 
workspace is shown as Fig. 2a.  

Given a set of joint variables, the values of the 
operational space variables deviate from those 
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computed via direct kinematics and the direct 
kinematics equation is dependent on the DH 
parameters by Eq. 4.  

 

 

 
Figure 2. Workspace and velocity manipulability ellipsoids  

 
2.5. Computation of the Jacobian Matrix  

After establishing the relationship between the 
joint variables and the end-effector position, we are 
able to compute the differential kinematics to map the 
joint angle velocities and the end-effector velocities. 
Therefore, if the end-effector location is expressed with 
the reference to a minimal representation in the 
operational space, the Jacobian matrix can be computed 
via differentiation of the forward kinematics function 
with respect to the joint variables [1]:  

 

(8) 

 
Therefore, we are able to compute the general 

version of the Jacobian matrix for our Lego arm and the 
result shows as below:  
 

 

(9) 

 

2.6. Velocity Manipulability Ellipsoids  
The evaluation of the manipulator is very helpful 

for determining suitable manipulator postures to 
execute a given task in the current configuration. 
Therefore, it is necessary to compute the velocity 
manipulability ellipsoids for all the configurations 
during the task. This allows us to make sure that there 
are no singular configurations, and more importantly, it 
can help us to obtain an idea of the capability at the 
end-effector for all configurations. Consider the set of 
joint velocities of unit norm [3]:  
 

 
(10) 

this equation describes the points on the surface of a 
sphere in the joint velocity space. Through the differ-
ential kinematics equation 4 solved for the joint 
velocities, we can obtain that:  
 

 
(11) 
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Figure 3. Motion of the robotic arm  

 
For our Lego arm, since it is a nonredundant 

manipulator, the points on the surface of the sphere in 
the joint velocity space are mapped into the points on 
the surface of the ellipsoid in the end-effector velocity 
space as shown in Fig. 2b.  
 
2.7. Simulink Programming  

The Simulink model encompasses three motors 
and six time signals. The motors are connected up and 
work together in a time sequence in order for the 3R 
Lego robot to work properly within the desired design 
specifications. The entire robot ran for approximately 
10 seconds allowing each motor to work independently 
of each other. The motors were actuated at specific time 
segments so that a smooth path trajectory was 
accomplished. Three simulated signals of each motor 
working independent of each other. Three blue signals 
works together in time to actuate the arm motor. One 
green signal is actuated to avoid an object during its 
path. Two red signals are actuated to allow the end-
effector to grasp an object and set it back down. The 
difficult part of programming the motors was to get the 
motors to work in sequence. After one motor would 
start the other motor would stop and start. To correct 
this the global configuration of the motors had to be 
looked at so that the motors functioned in sequence yet 
independent of one another as shown in Fig 3a.  

2.8. Trajectory Planning  
Given an initial configuration and a final assigned 

posture, we selected a path for the end-effector in the 
operating space based on workspace and manipulability 
ellipsoids analysis. We divided the motions into several 
parts, including (1) reach an object, (2) pick up the 
object, (3) lift the object, (4) avoid an obstacle, (5) place 
the object back down and for each part, it lasts 
approximately 2 seconds. By Eqs. 5, 6, 7, we are able to 
solve the inverse kinematics for all configurations. The 
cubic spline trajectory was chosen to plan the point to 
point motion for each part of the motion. Based on the 
inverse kinematics, each part of the motion only needs 
one joint to move which simplifies the calculation. Fig. 
3b shows the result for Part 1 of the motion, reaching 
the object.  

The position curve shows that the initial joint 
angle is 90 degrees and the final joint angle is 0 degrees. 
The arm starts from rest and end at rest.  
 
2.9. Data Collection  

An acceleration sensor was placed at the end-
effector and connected to port 1. The sampling rate we 
set was 0.01 seconds. This allowed the sensor to collect 
as much information as possible within the ten seconds 
of running the actual program. This sensor provides 
acceleration data within the x, y and z axes. The sensor 
has an orientation so that the axis perpendicular to the 
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floor always shows the Earth’s gravitational 
acceleration. When the sensor is at rest and in the 
normal horizontal position, the x and y axis will be 
approximately zero and the z axis will be about 200 
counts. This corresponds to a value of 1 g. It was 

necessary to convert counts to m/s
2 

in order for the 
data to coincide with the rest of our calculations. 
Additionaly, the acceleration in the x, y and z axes was 
used to calculate the tilt angle with respect to each axis. 
Then, it was compared to the simulation results from 
Matlab.  

Additionaly, we used a gyroscope to collect the 
angular velocity of the link of the robotic arm every 0.01 
seconds. This gyroscope is capable of measuring the 
angular velocity with respect to one axis at a time 
within a range of -360 to 360 degrees. We set it up with 
with an offset value of 588 to compensate for the 
discrepancy from the zero degree/sec value when it was 
at rest. The sensor was placed at the joint that controls 
the up and down movement of the link. However, since 
the robotic arm is not very sturdy and the sensor is very 
sensitive, a post-processing step of the signal was 
required to smooth it out. Yet, it shows the values 
collected when the link was even vibrating. A 
differentiation of the smoothed angular velocity was 
performed to calculate the angular acceleration of the 
robotic arm for the first 2 seconds of its trajectory.  
 
3. Results  

After a myriad of attempts, we successfully 
programmed and discovered a worthy process for the 
3R Lego robot. The path planned trajectory was 
designed to specification and allowed for 5 basic steps 
of the trajectory. This process was tested many times so 
that the repeatability of the system could be 
accomplished. The process required that the number of 
degrees of freedom of the 3R Lego robot be fully utilized 
in order to pick up an object, avoid an obstacle, and 
place it back down. Outlined below is a successful 
process of an iteration of the 3R Lego robot.  

The acceleration sensor was used to measure the 
actual acceleration at the end-effector. The sensor data 
that was collected shows a linear acceleration at the 
end-effector for 10 seconds of data collection. As the 
motors are switching to perform different tasks, the 
acceleration produces peaks and valleys in acceleration. 
However, the sensor shows the acceleration due to 
gravity for the z axis combined with the linear 
acceleration of the object. One cannot distinguish the 

actual acceleration in each axis when the sensor is being 
rotated.  

An advantage of having an accelerometer is that it 
has high accuracy with our applications and is more 
efficient to calculate the angular position of the end-
effector. A big disadvantage is that the sensor may not 
be sufficient to obtain angular velocity and acceleration.  
 
4. Conclusion  

We have shown that a 3R Lego robotic arm can be 
used to understand basic robotic concepts. A hands-on 
approach was compared to theoretical results through 
the use of Matlab and Simulink. An acceleration sensor 
and a gyroscope were required to obtain the angular 
distance, and the angular velocity and acceleration, 
respectively. The use of each sensor have pros and cons 
that were described in this paper. One way to obtain 
cleaner velocity and acceleration data would be by the 
integration of another acceleration sensor along the link 
to use a differential acceleration process. Having more 
accurate data is important for the calculation of forward 
and inverse kinematics that will allow a better control 
of the robotic arm.  
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