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Abstract – High-speed navigation of autonomous Unmanned 
Ground Vehicles (UGVs) in rough unknown terrains requires the 
detection and identification of the terrain in order to make 
effective navigation decisions. This paper investigates a 
geometrical approach to identifying terrain based on its 
roughness using the terrain elevations from a point cloud 
generated using a 3D camera. This roughness, called the 
Roughness Index (RI), is used to identify different terrains by 
overlaying the terrain with a grid map and using the standard 
deviation of the point cloud elevations in each grid cell. The 
experimental testing and results of this terrain identification 
technique are presented as determined from field experiments 
using an experimental UGV test platform on rough outdoor 
terrains. 
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1. Introduction
Unmanned Ground Vehicles (UGVs) are becoming 

increasingly prevalent in everyday life as these complex 
systems are being used in applications including 
surveillance, military, law enforcement, industrial 
hauling, and search and rescue. In order for these 
systems to navigate effectively in any environment they 
must be able to detect the terrain and react accordingly. 
When traveling at high speeds sudden changes in terrain 
characteristics, without modification of UGV navigation 
behaviour, may damage the vehicle due to excessive 
terrain interaction forces. In order to avoid such 
occurrences techniques for predicting the terrain the 
UGV will encounter are essential to allow for navigation 
decisions to be made in advance of the vehicle physically 
encountering the terrain. This paper investigates the 

challenge of predictive terrain identification to perform 
navigation decisions for high-speed UGVs. 

1.1.  Related Work 
Methods for the identification of terrain for the 

purpose of traversability analysis fall into three main 
categories as identified by Papadakis [1]: i) 
proprioceptive, ii) appearance based, and iii) geometry 
based. Proprioceptive based techniques such as those 
proposed by Sadhukhan [2], Brooks et al. [3], Weiss et al. 
[4], and DuPont et al. [5] have used frequency domain 
vibration information measured from UGV mounted 
accelerometers along with machine learning techniques 
to classify terrain into discrete terrain types (e.g. grass, 
gravel, dirt). These works noted that the vibration 
measurements used to classify terrain changed with 
vehicle speed for the same terrain making the 
classification techniques speed dependent. To address 
this speed dependency for a car type vehicle work by 
Ward and Iagnemma measured the un-sprung mass 
acceleration and used a quarter car model, along with the 
speed of the vehicle, to estimate the spatial profile as an 
input to a Support Vector Machine (SVM) terrain 
classifier [6]. In a similar approach by Collins and Coyle 
four one degree of freedom suspension elements were 
considered attached to a rigid body, with linear vertical 
velocity, pitch rate, and roll rate of the vehicles body 
sensor readings being used to estimate the spatial 
terrain profile as an input to a Neural Network (NN) 
classifier [7].  

The problem with these approaches is that 
proprioceptive terrain identification techniques are 
limited to reactive classification of terrain, which means 
that sudden terrain changes when the vehicle is traveling 
at high-speed may damage the vehicle before it can alter 
its navigation behaviour. Additionally, these works all 
focused on terrain classification into discrete terrain 
classes. Terrain classes such as dirt, grass, and gravel 
provide no specific measure of traversability other than 
a class label (e.g. knowing one terrain is grass and 
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another is gravel provides no inherent information 
about which terrain can be travelled on at a higher speed 
without further knowledge), which means that further a 
priori knowledge of the traversal characteristics for each 
terrain type must be predetermined or learned by a 
machine learning algorithm. For large numbers of 
terrain classes this is a significant and time consuming 
challenge, which is further complicated since vehicles 
with different dynamics will have different terrain 
traversability characteristics. 

Appearance based techniques identify terrain 
predictively, providing a solution to the problem of the 
reactive nature of proprioceptive techniques. One 
approach to appearance based terrain identification is to 
perform binary classification whereby terrain is 
identified as either traversable or non-traversable [8]–
[11]. The approaches by Shneiera et al. in [8] and Thrun 
et al. in [9] were in fact a hybrid approach which used 
geometric sensors to identify nearby non-traversable 
features with an algorithm identifying similar appearing 
non-traversable regions in camera images for longer 
range terrain prediction. Kim et al. took a different 
approach by training a visual classifier to identify non-
traversable regions through a hand labelled training set 
[10]. The most recent approach by Milella et al. uses 
radar to detect ground and non-ground areas, the results 
being used to train a visual classifier to detect these 
binary classes [11]. The problem with binary approaches 
is that the degree of traversability is not determined (e.g. 
pavement and gravel are both traversable, but the 
approach does not identify pavement as more 
traversable).  

This need for more specific terrain type 
identification has led to multi-class based terrain 
identification techniques. Visual data from a camera 
image has been used to train machine learning 
techniques such as SVMs, Extreme Learning Machines 
(ELM), NNs, and Bayesian classifiers [12]–[18]. Work by 
Abbas et al. used colour and texture features along with 
a SVM to classify six terrain types with up to 97% 
accuracy. Texture only features were used by Filitchkin 
and Byl for terrain classification on Little Dog using an 
SVM classifier with up to 95% accuracy for six terrain 
types [16]. A comparison of ten different approaches for 
determining colour/texture features along with the 
comparison of ELM, SVM, and NN machine learning 
techniques on five terrain types lead to the 
determination by Zou et al. that the Joint Composite 
Descriptor (JCD) using ELM produced the best terrain 
classification with up to 99% accuracy [13]. This JCD was 

developed in work by Zagoris et al. [19]. Komma et al. 
performed Bayesian classification on six terrain types 
with accuracy of up to 95% [14]. Bayesian classification 
was also done by Kim et al. who went beyond terrain 
classification by using classified terrains to estimate the 
friction coefficient of the ground from known terrain 
type friction coefficient values [15]. A hybrid approach to 
visual classification used by Brooks and Iagnemma trains 
a vibration classifier using an SVM classifier with hand-
labelled data, then these vibration classifications are 
used to train a visual feature based (colour and texture) 
SVM classifier in a self-supervised manner [17]. Another 
hybrid approach uses random forests decisions trees 
(RFDT) to classify terrains independently based on 
visual texture information and LIDAR data; these 
independent classifications are then fused to produce 
classification rates up to 94% accurate on four different 
terrain types [18]. 

While multi-class classification allows for the 
discrimination of different terrain types to enable 
variable navigation behaviour, there is still no specific 
knowledge relating to the level of traversability without 
further information. For these classes a method of 
determining the ideal navigation behaviour for each 
class label would either need to be trained or previously 
known for the specific UGV dynamics. 

Geometric approaches can address the issue of 
recognizing specific traversability levels, although not all 
methods take this approach. In the most common case 
geometric approaches identify obstacles using a point 
cloud of the terrain elevations for detection of both 
positive and negative features [20]–[22]. Another 
geometric approach by Lu et al. used a 2D laser line 
stripper to extract spatial frequency and texture 
information about the terrain to perform four class 
classification of the terrain with over 90% accuracy [23]. 
While these approaches perform well, they still do not 
identify the level of traversability for non-obstacle 
terrain areas.  

An example of a geometric technique that does 
address the level of traversability is an approach by 
Broggi et al. that provides a method for detecting the 
slope of the terrain, as well as obstacle detection, 
through fitting a terrain to a B-spline surface [24]. This 
slope estimation provides an explicit geometric measure 
of the terrain which is useful as a traversability metric 
for preventing occurrences such as rollovers. 

While slope is an important measure of terrain  for 
determining stability of the vehicle, another important 
aspect is to be able to assess the terrain for its roughness 
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such that the UGV will have a traversability metric that 
can be used to control the speed of the vehicle (in order 
to prevent excessive forces on rough terrains). Bellone et 
al. identifies a method of detecting the normal vector of 
local surfaces from a point cloud and using these normal 
vectors to estimate the local unevenness of the terrain 
[25]. This unevenness measure provides a relative score 
of the traversability level of the terrain. With such an 
approach the disadvantage is that a local normal vector 
representation of the terrain requires the fitting of local 
planes which essentially produces a smoothing effect on 
the data (i.e. local variations in the point cloud are 
replaced with a smooth plane). Although the local 
unevenness calculation method from [25] provides a 
method of measuring variability of the neighbouring 
normal vectors, essential original geometric point cloud 
information may have been lost from the fitting of the 
planes. A method that avoids this potential loss of 
geometric information is proposed by El-Kabbany and 
Ramirez-Serrano in [26] and improved by Wilson et al. 
in [27]. This method identifies terrain roughness 
through the variance of the point elevations in a point 
cloud. 

The method of terrain identification through 
geometric based roughness identification proposed by 
El-Kabbany and Ramirez-Serrano in [26] and improved 
by Wilson et al. in [27] provides a measure of the level of 
traversability of terrain and is a promising technique. 
The work in [26] and [27] provides the theoretical basis 
for this terrain identification technique; however, this 
work does not fully investigate the challenges of 
implementing such a technique on a real-world UGV 
platform, not does it provide experimental testing and 
results of this technique operating on a moving UGV in 
typical outdoor terrains. 

This paper will develop metrics for determining 
the required point density of the point cloud for 
calculating the terrain roughness for the technique 
developed in [27]. Specifically this work will contribute 
a novel measure of determining the minimum number of 
points from a point cloud for calculating an effective 
roughness identification, an experimental method of 
selecting an appropriate grid cell size based on this 
minimum point threshold, and (for the first time) real-
world experimental testing of this roughness 
identification method on a UGV travelling under field 
conditions in typical rough outdoor terrains. 

 
 
 

2. Theory 
Traversing a given a priori unknown terrain 

effectively with a UGV requires the perception of the 
terrain in front of the UGV. In this article this is 
accomplished through geometric perception of the 
terrain using a range sensor (e.g. stereo camera, 3D laser 
scanner) to produce a point cloud; experimental tests in 
this article used a MESA SwissRanger SR4000 3D 
camera. As a 3D point cloud itself is not directly useful 
for navigation decision making, this data must be 
processed to identify the terrain based on its geometrical 
properties. For this purpose the Roughness Index (RI) 
was developed. The RI is used to identify the perceived 
roughness of a terrain using a 3D point cloud; the RI is 
defined as follows: 
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where 𝑠𝑒 is the sample standard deviation of the point 
elevations for a sample of size 𝑛, 𝑒𝑖 is a point elevation in 
the sample, �̅� is the sample mean of the point elevations, 
and ℎ is the ground clearance of the UGV. 

The reason for the inclusion of the ground 
clearance ℎ in Equation (1) is for the comparison of 
roughness relative to the capabilities of the UGV. While 
mathematically the RI has a range of [0, ∞), where 0 is a 
perfectly smooth terrain and ∞ is the roughest possible 
terrain, in practice it can be generally visualized that any 
terrain with 𝑅𝐼 ≈ 0 is smooth, while any terrain with 
𝑅𝐼 ≈ 1 is rough. The selection of 1 as rough terrain is 
arbitrary, though mathematically it means that ~32% of 
the terrain point elevations are at least one ground 
clearance greater than the mean (which is a significant 
elevation change). 

To demonstrate how the RI works a simulated 
example of a UGV identifying a sigmoid terrain is 
presented. In this example the ground clearance ℎ of the 
vehicle was set to 0.1 𝑚, while the terrain elevation 
change was 0.15 𝑚. The surface of the sigmoid terrain 
being identified is shown in Figure 1, while the sigmoid 
terrain profile is compared to the vehicle in Figure 2. 
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Figure 1. Sigmoid surface 

 

 
Figure 2. Sigmoid compared to UGV 

 
To obtain a point cloud that represented this 

terrain 200 random points were placed on the surface of 
the sigmoid (Figure 3 & Figure 4) and from these the RI 
was calculated. For these points the mean terrain point 
elevation was 0.079 𝑚 and the RI was 0.66. From these 
numbers it can be seen that a terrain with an 𝑅𝐼 ≈ 1 
would be quite rough, supporting the proposal that a 
value of 1 can be considered rough terrain for 
visualization purposes. 

 
3. Implementation 

When implementing the RI for the purpose of 
terrain identification on a UGV one possibility is to use 
the entire point cloud to calculate a single RI for the 
entire area being captured by the 3D camera. The 
problem with this is that different areas of the terrain 
that are being captured may have dramatically different 
roughness. In the case of the MESA SwissRanger SR4000 
the range of the camera is ~10m; this is a long distance 
where roughness may not be uniform. To improve the 
terrain identification the terrain can be divided into a 2D 
grid map where the dimensions are the horizontal 

distance in front of the camera, and the horizontal 
distances to the left and right of the camera. For each grid 
cell the RI can be calculate individually using the mean of 
the terrain elevation points within each cell. 

 

 
Figure 3. Point cloud 

 

 
Figure 4. Point cloud: side view 

 

For this 2D grid approach to implementing the RI 
it is important to take into account the number of terrain 
elevations points that are sampled in each grid cell. Since 
the RI is calculated as the sample standard deviation of 
the terrain point elevations it is important that this 
sample standard deviation be representative of the 
population standard deviation of the grid cell. For this 
purpose assume that the terrain point elevation 
population follows a normal distribution in each grid 
cell. Since each grid cell contains a sample of the terrain 
point elevation population consider the t-distribution 
that describes the distribution shape as a function of the 
sample size. As the sample size approaches ∞ the t-
distribution is equal to the normal distribution, and 
therefore at a sufficiently large sample size the t-
distribution is a good approximation of the normal 
distribution. A common arbitrarily selected value for this 
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approximation is a sample size of 30 [28]. Therefore in 
this article it is assumed that if the sample size of the 
terrain elevation points in a grid cell is ≥ 30 then the 
sample standard deviation is considered to be a 
sufficient approximation of the population standard 
deviation. In the implementation of the RI in a 2D grid 
map any cell with less than 30 points is labelled as 
invalid. 

Given that it is assumed that ≥ 30 terrain elevation 
points are needed in a grid cell for it to be valid, it is 
important to consider the size of the grid cells. If the grid 
cells are made too small most of the grid cells will have 
< 30 terrain elevation points and will be invalid. On the 
other hand, if the grid size is too large then smaller 
details about the terrain will be lost. It is therefore 
important to select an appropriate grid cell size based on 
the cameras resolution. To observe the effect of grid size 
on the RI grid, consider the terrain presented in Figure 5. 
Using a SR4000 3D camera a point cloud of the terrain 
was obtained (Figure 6).  

From the point cloud in Figure 6, RI grids for 
various grid sizes were calculated. These grid sizes were 
0.05𝑚 , 0.1𝑚 , 0.2𝑚 , 0.5𝑚 , and 1.0𝑚 as shown 
respectively in Figure 7 through Figure 11.  

 

 
Figure 5. Complex terrain 

 

 
Figure 6. Complex terrain point cloud 

 

Observing Figure 7, that has the smallest grid size, 
it is clear that due to the point density of the camera 
there are limited areas of the image which have ≥ 30 
points; therefore, other than a couple high roughness 
obstacles (trees) only about 1 to 1.5𝑚 of the terrain has 
any RI associated with it. In Figure 8, with a 0.1𝑚 grid 
size, the range at which there is RI information has been 
extended to about 1.5 to 2.0𝑚, and the individual 
obstacles (trees) are still clearly visible. When the grid 
size reaches 0.2𝑚 in Figure 9 the trees have begun to be 
lumped together into larger areas of high RI, though at 
the same time the patches of trees are still separated into 
two areas. This grid size has extended the range of RI 
identified areas to about 2.5 to 3.0𝑚. When the grid size 
is increased yet further to 0.5𝑚 as shown in Figure 10 
the trees have become a single area of high roughness 
and all fine details have been lost. The advantage to this 
grid size is that the range of the RI grid has been 
increased to about 4.5𝑚. With the largest grid (Figure 
11) it can be seen that the RI scores have become 
generalized and there are no areas which have less than 
a 0.2 RI score. With this large grid size there are no fine 
details remaining about the terrain; however, the range 
of areas with RI scores is the largest (extending the full 
5m).  

From Figure 7 to Figure 11 it can be seen that it is 
important to have a compromise between RI grid range 
and the resolution of the RI grid. If the grid size is too 
small there will be very few areas with an RI since < 30 
points fall in the majority of the grid cells. If the grid cell 
size is too large fine details about the terrain are lost, and 
the areas that do exist become more generalized as they 
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are taking the standard deviation of points over a larger 
area. For the purpose of the testing in this article a grid 
cell size of 0.2m was selected. 

 
Figure 7. Grid size 0.05m 

 
Figure 8. Grid size 0.1m 

 
Figure 9. Grid size 0.2m 

 
Figure 10. Grid size 0.5m 

 
Figure 11. Grid size 1.0m 

 
4.  Experimental Platform 

For the experimental testing of the RI in outdoor 
terrains on a moving UGV an experimental test platform 
had to be developed. This custom test platform is shown 
in Figure 12.  

 

 
Figure 12. Experimental test platform 
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This vehicle was custom made for the AR2S 
Laboratory running a multitude of sensors for terrain 
identification and vehicle state estimation. The state of 
the vehicle (position, velocity, orientation) is estimated 
using an IMU, GPS, and wheel encoders running various 
algorithms including a Kalman filter for positioning data. 
The SwissRanger SR4000 mounted on the front of the 
vehicle is the 3D camera which captures the point cloud. 
The Arduinos handle the motor control and the sensor 
data acquisition while the Shuttle PC collects, processes, 
and stores the experimental data. The UGV was driven by 
remote control with the XBee wireless transmitter 
receiving the motion commands. This vehicle had a 
ground clearance of 0.09𝑚. 

 
5.  Experimental Testing and Results 

During the experimental testing the UGV was 
driven at a speed of ~1.5m/s. During the testing the 
point cloud of the terrain was captured and stored in real 
time along with the vehicle state estimates in 10 to 20𝑚 
tests. The UGV was driven through a variety of terrains 
including roots, pavement, gravel, and grass (Figure 13 
to Figure 16).  

After the data was gathered it was processed in the 
lab to produce the RI in a graphical RI grid map. The 
processing time of the point clouds for each run into RI 
grids took approximately 1/5 of the time each 
experiment was run (i.e. a 25s test run took 5s to process 
and plot). This means this terrain identification 
technique is suitable for real-world applications since it 
is able to run in real-time. The results for each of the 
terrains are shown below (Figure 17 to Figure 20).  

From Figure 17 through Figure 20 it can be seen 
that the Root terrain (Figure 17) is the roughest RI grid 
(as expected), while the other three terrains are more 
similar in appearance. It can be noted that the pavement 
(Figure 18) and gravel (Figure 19) terrains are almost 
identical in appearance, which is to be expected since 
they are both relatively smooth and hard surfaces. It 
should be mentioned that especially in the gravel terrain 
there are some isolated areas of high roughness. These 
areas are attributed to artifacts introduced by the 
parking lot lighting. It was noticed that streetlights 
caused errors in the SwissRanger SR4000 cameras point 
cloud; presumably the wavelength of the light being 
output by the lights is the same as that of the SR4000’s 
TOF sensors. The grass terrain (Figure 20) was slightly 
different than the pavement and gravel, having areas of 
moderate roughness (RI≈0.5). This is because the grass, 
instead of the ground underneath, is being detected by 

the SR4000 and the point cloud is producing a rougher 
appearing terrain than actually exists. This is an issue 
with all current sensors and deformable 
terrain/vegetation. Current sensor technology and 
techniques have a very difficult time dealing with 
obstructions and terrain such as tall grass.  

 

 
Figure 13. Root terrain 

 

 
Figure 14. Pavement terrain 

 

 
Figure 15. Gravel terrain 

 

 
Figure 16. Grass terrain 
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Addressing the most dynamic terrain again, the 

root terrain (Figure 21), observe a comparison of 
different areas of the terrain in Figure 22. The first area 
labelled Area 1 corresponds to a large horizontal root. As 
expected, in the RI grid this is detected as a feature. Area 
2 is a large wide collection of roots that is also detected 
properly in the RI grids as a large area of high roughness. 
Finally, Area 3 is a smoother area of dirt that is also 
correctly identified in the RI grid. From this it is 
concluded that the RI is performing properly and 
correctly identifying areas of high and low roughness. 

 

 
Figure 17. Root RI grid 

 
Figure 18. Pavement RI grid 

 

 
Figure 19. Gravel RI grid 

 

 
Figure 20. Grass RI grid 

 

 
Figure 21. Labeled root terrain 

 

 
Figure 22. Labeled RI grid 

 
5.1. Discussion 

The results in Section 0 demonstrate the RI 
effectively identifying terrain for a UGV traveling in 
typical outdoor terrain. In comparison to proprioceptive 
techniques such as in [4]–[6] this technique is capable of 
predicting upcoming terrains. This allows for a UGV to 
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make navigation decisions using the predicted terrain 
roughness before physically encountering the terrain, 
preventing dangerous vehicle-terrain interaction forces. 
Existing predictive techniques that identify traversable 
and non-traversable terrains in [8]–[11] do not provide 
the same level of detail as the RI and allow only for 
navigation decisions regarding where not to travel. As 
seen in the results shown in this paper terrain is 
identified with varying levels of roughness meaning a 
UGV can make more precise navigation decisions. These 
precise navigation decisions could involve selecting 
vehicle speed as a function of the RI (to prevent damage 
on high roughness areas, and allow for fast travel on low 
roughness areas), thus allowing for the vehicle to 
optimize a path across the terrain that would be as fast 
and safe as possible. 

Techniques exist for identifying classes of 
traversable terrains in the form of multi-class 
classification approaches [12]–[18]. While these 
approaches could also enable more precise navigation 
decisions the problem is that identifying that terrain is of 
one class or another does not, considered alone, provide 
any information about the relative traversability of the 
terrain. For example, knowing the terrain type is either 
grass or gravel with no additional information does not 
assist in determining which terrain is more traversable; 
however, knowing one terrain has a RI of 0.4 and another 
has a RI of 0.7 clearly indicates that it would be easier to 
traverse the terrain with the lower roughness of 0.4. For 
multi-class classification approaches significant 
additional effort must be made to characterize each 
terrain class and determine the relative navigability. 

There do exist other geometric approaches to 
terrain identification that provide an explicit relative 
measure of the terrain’s traversability. For example the 
work in [24] presented a method of estimating the 
terrain slope. This approach serves a different purpose 
to the RI presented in this paper; it can be used to 
determine the stability of the UGV as it traverses terrain. 
What this method of slope prediction is not able to 
provide is a method of predicting the relative measure of 
terrain interaction forces. For high RI the higher 
roughness would cause higher vehicle-terrain 
interaction forces, while lower RI would cause smaller 
forces. This information can be used to determine speed 
of the vehicle for the navigation behaviour.  

Another approach for geometric relative 
traversability has also been developed in [25]. This 
approach identified the normal vector for local surfaces 
of the terrain, and a comparison of neighbouring normal 

vectors was used to calculate an unevenness 
measurement of the terrain. While this is basically 
another approach to roughness identification of the 
terrain, the method of calculating unevenness from a 
comparison of normal vectors of the local surfaces 
causes the loss of geometric information for the terrain. 
These unevenness measures provide only a relative 
comparison of the terrain unevenness when compared 
with respect to another unevenness measure. The RI, on 
the other hand, preserves key geometric information 
about the terrain. Given that the RI is essential a measure 
of the standard deviation of the points within a grid cell, 
this standard deviation (along with an assumed standard 
distribution of points) can be used to estimate key 
terrain characteristics such as probabilistic maximum 
step height of the terrain (through estimating 
maximum/minimum expected point elevations for the 
specific value of the standard deviation). Potential 
applications for this maintained geometric information 
include predictive explicit terrain-vehicle interaction 
force estimation through using the probabilistic step 
height as an input to a dynamics model of the UGV. 

This paper has demonstrated that the RI is capable 
of providing predictive measure of terrain traversability 
with calculations performed in real-time which in future 
work will enable a UGV to make effective navigation 
decisions in advance of physically encountering 
potential dangerous terrain. It has also demonstrated 
that is can effectively detect the relative traversability of 
the terrain for use in navigation decision making while 
maintaining geometric information pertaining to the 
standard deviation of the point distribution within each 
grid cell (potentially useful in applications of predicting 
terrain-interaction forces).  

While this technique of terrain identification using 
the RI has presented many advantages, there are aspects 
of the technique that need to be improved or 
supplemented by another technique. For example, the RI 
does not provide information about the terrain slope. 
When making navigation manoeuvres vehicle stability is 
important and additional information about terrain 
slope is necessary to supplement the terrain information 
provided by the RI. Additionally, the RI is dependent on 
a high density point cloud of the environment. Typical 
geometric sensors currently have either limited range 
(e.g. time of flight cameras), have significant resolution 
limitations as range increases (e.g. laser scanners), or 
have substantially increasing error as range increases 
(e.g. stereo camera, error is proportional to square of 
distance). Further development of sensor technologies 
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which provide a long range dense point cloud, or 
methods of extrapolating short range point clouds to 
longer ranges, will be necessary for high-speed travel 
since the UGV must at least be able to have time to come 
to a complete stop after dangerous terrain features are 
detected (e.g. stopping distance for a typical car is 55m 
at 96km/h [29]). This technique also runs into 
limitations in terrains with features such as dense 
vegetation where the 3D point cloud of the terrain is 
prevented from detecting the true surface of the terrain 
and instead picks up the features of the vegetation. 
Sensor technologies for detecting the true surface of the 
terrain through obstructions (such as vegetation) will 
need to be developed. Finally, the RI also considers all 
terrain is rigid. Deformable terrains are not accounted 
for in the RI, and it will be an area for further 
investigation to determine methods to account for this 
deformability. 

 
6.  Conclusion 

This paper presented a geometrical terrain 
identification approach, the Roughness Index (RI), that 
identified terrain based on the roughness of the terrain 
using the point cloud of a 3D camera sensor. Techniques 
for implementing the RI on real world terrains using a 
grid map were investigated. Comparisons of different 
grid size selections and their effect on the RI grid map 
were discussed. It was found that as the grid size was 
increased the effective range of the 3D camera was 
increased (due to the sparsity of points at longer ranges); 
however, this range increase came at the cost of losing 
terrain details. It was therefore concluded that a 
compromise must be selected between RI grid range and 
the detailed resolution of the grid. 

This technique was also implemented on an 
experimental UGV platform for real-world testing.  
During the testing the RI was computed for a variety of 
terrains (grass, gravel, pavement, roots). It was found 
that the RI performed well at correctly identifying areas 
of high and low roughness. It was also concluded that the 
algorithm was fast enough to run in real time for high-
speed vehicles, meaning it can be used in real-world 
applications. 

Further work planned in this area includes 
expanding this roughness detection to account for 
terrain deformability (the technique proposed here 
assumes all terrain is rigid), and extrapolating terrain 
roughness to distant terrain using terrain appearance in 
a camera image (since 3D point cloud generating sensors 
are either short range or have low point density at long 

ranges), and methods to account for point cloud 
obstructions (e.g. vegetation). 
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