
Avestia Publishing

Journal of Automation and Control Research

Volume 1, Year 2014

ISSN: 2368-6677

DOI: 10.11159/jacr.2014.005

Date Received: 2014-05-21

Date Accepted: 2014-09-04 38

Date Published: 2014-10-28

Learning Robotic Concepts with a 3R Lego NXT
Robotic Arm

Michael Thompson1, Victoria M. Serrano R.1, Jordan E. Willem Noriega2, Vanessa Martinez3
 1Arizona State University, 1151 S. Forest Ave, Tempe, Arizona

mjthomp3@asu.edu; vmserran@asu.edu
2Arizona State University, School of Sustainable Engineering and the Built Environment,

1151 S. Forest Ave, Tempe, Arizona, 85281
jewillem@asu.edu

3Arizona State University, School of Electrical, Computer, and Energy Engineering
1151 S. Forest Ave, Tempe, Arizona, 85281

vimartin@asu.edu

Abstract- In this paper we present the use of a 3R Lego robotic
arm for teaching basic robotic concepts. The Lego Mindstorms
NXT kit is an affordable equipment that can be used to better
visualize robotic concepts usually taught in classes. The 3R
Lego Robot has 2 degrees of freedom and has been equiped
with an accelerometer located at the end-effector to collect
acceleration data in the x, y and z axes. Additionally, a
gyroscope was placed at the joint for the up and down
movement. This allowed for obtaining a plant for the 3R Lego
Robot in order to understand the inverse and forward
kinematics as well as the physical representation of Denavit-
Hartenberg (DH) parameters, velocity manipulability ellipsoids
and trajectory planning. This is essential and key in the study of
plants that is relevant to everyday use in the industry and
academia. This will allow professors at the university to teach
more easily with hands-on approach. The Lego product is cost
efficient and new programmable blocks can be built and
incorporated into Simulink models. Therefore, this can be
extended to more complex analysis and feedback control. This
will lead to better analysis of the system and provide the
students with higher education of what they have learned in
class. Furthermore, students will be more competitive to obtain
jobs in industry by combining theoretical with experimental
approach. Traditionally, industry core concepts are not taught
in the class and may be incorporated with the 3R Lego robot
for resume building and skill set application. Some papers
indicate the use of different programming languages for the
Lego Robots; however, none of them have the capabilities and
potential of Matlab and Simulink. Additionally, some others
have presented simulation work to teach robotic-related
concepts, but they either lack the hands-on approach or the
hardware utilized is expensive. The importance of this study
lies on understanding and implementing basic robotic concepts
in Matlab and Simulink together with a 3R Lego robot.
Therefore, a more complex Simulink model can be developed

for controller design purposes. This paper describes a
comparison of a simulation model versus a real life system for
helping students to understand modeling system theories
versus real world applications.

Keywords: 3R lego robot, Simulink, Matlab, Forward and
inverse kinematics, DH parameters, Trajectory
planning.

© Copyright 2014 Authors - This is an Open Access article
published under the Creative Commons Attribution License
terms (http://creativecommons.org/licenses/by/3.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

1. Introduction
As technology advances, engineers have always

been interested in mimicking animal or human-like
behaviors using robots. A great motivation to study
robotics is how often they are used in industrial
applications. Someone would be hard-pressed to find
any factory that does not heavily depend on robots to
function. They are faster, more precise, and less
expensive in the long run when compared to their
human counterparts. Robots are capable of performing
a variety of different tasks. In addition, they do not need
common safety and comfort requirements that humans
need in order to continuously perform them.
Furthermore, as long as the robots are intuitively
designed, they can be adapted and used in the future for
different maneuvers as well. However, understanding
how these apparatus work in real life constitute an

39

important component in robotics-related classes.
Although robotics concepts are often taught in many
books [1], [2], [3], they become hard to visualize in a
three-dimensional space. To cope with this problem,
some simulating programs have been proposed in the
recent years. RoboAnalyzer [4] emerged as an attempt
to perform forward kinematics and show animations
based on the DH parameters of a KUKA KR5 robot [5].
In a later version, features such as transformations,
import of a 3D CAD model and inverse kinematics were
also included [6]. Other platforms such as ROBOMOSP
[7], RoboWorks [8] and Easy-Rob [9] have been created
with the same purpose. In the same matter, a Matlab
GUI was developed to simulate and learn the basic
concepts of robot dynamics [10]. They include the
selection of well-known manipulators like Puma,
Stanford and Scara by changing the link masses, inertias
and the Denavit-Hartenberg (DH) parameters. The
importance on the latter lies on the fact that they are
typically used to represent the architecture of a robotic
arm and are usually provided by its manufacturer [11].
The DH parameters were used to define different
configurations of a FANUC LR Mate 200iB robot and
compared to the results provided by an open software
for the synthesis, analysis, simulation and control of the
same robot [12]. Nonetheless, although they allow to
have a better understanding of real physical systems,
they become expensive for educational purposes.

Recent studies demonstrate the extended use of
Lego NXT kits for educational purposes [13], [14]. While
most of them have been used for controller design [15],
[16], [17] and signal processing manipulation [18], the
number of articles found for teaching basic robotic
concepts is lacking. In this matter, a 3 degrees of
freedom (DOF) drawing robot has been proposed [19]
using Lego NXT and LejOS [20], a program that allowed
to have a better resolution for the position of the motor
axle compared to the NXT default operating system.
Additionally, a robotic arm through the use of Lego
Mindstorms NXT kits and the Not Quite C (NQC)
language have been developed [21]. Yet, none of them
use Matlab and Simulink to study and control the
robotic arm; therefore, they limit the research scope
that can be developed with the use of Lego NXT kits.
Matlab and Simulink constitute a powerful environment
that allows the use of toolboxes such as robotics [22],
system identification [23], control system tuning [24]
and optimization [25] that leads to a better
understanding of control systems and robotics.

Our goal is to build and program a robotic arm

using critical robotic concepts. This includes forward
and inverse kinematic equations, DH parameters, force
and velocity manipulability ellipsoids with the use of
Simulink and Matlab. The Lego Mindstorms NXT kit
allows for a comparison between simulation and real
data. This will allow a future integration of more
advanced control-related concepts through the use of
existent Matlab toolboxes.

2. Methods

In order to control the robot arm to accomplish
the task, several analyses were needed including the
forward and inverse kinematics, the workspace,
trajectory planning and the force and velocity
manipulability ellipsoids at the end-effector throughout
all the configurations. The manipulator constituted by 4
links (including the base) connected by 3 joints. The aim
of forward kinematics is to determine the end-effector
position and the orientation as a function of the joint
angles. It was illustrated in class that the position and
orientation of a body with respect to a reference frame
are described by the position vector of the origin and
the unit vectors of the frame attached to the body.
Hence, with respect to the base frame, the forward
kinematics function can be expressed by the
homogeneous transformation matrix.

2.1. DH Convention

 Figure 1. The kinematic model of the Lego robot arm

Since the manipulator structure is an open

kinematic chain, each joint connects two and only two
consecutive links. Therefore, it is reasonable to first
describe the kinematic relationship between
consecutive links and then to obtain the overall
description of the manipulator kinematics in a recursive
fashion [1]. To this purpose, the Denavit-Hartenberg

40

(DH) convention was used to construct the direct
kinematics function by composition of the individual
coordinate transformations expressed by Eq. 1.

(1)

The frame for each link was defined as shown in

Fig. 1. Therefore, the coordinate transformation de-
scribing the position and orientation of the end-effector
frame with respect to the base frame is given by Eq.
2.

(2)

Therefore, the homogeneous transformation

matrix for this manipulator is shown below.

(3)

Consider the arm in Fig. 1, where the base and the

link frames have been illustrated. The axes xi were
chosen to minimize the calculation. The DH parameters
are specified in the table 1. It is worth pointing out that
the frame 3 does not coincide with the end-effector
frame and the end-effector frame can differ due to the
different tasks.

Table 1. Lego arm D-H parameters

i αi ai di θi
1 0 0 0 0
2 -90° L1 = 95.32mm d = 24.7mm Θ1
3 0 L2 = 201.75mm 0 Θ2 - 90°
4 0 L3 = 61.05mm 0 Θ3 - 180°

2.2. Forward Kinematics

If the task is to be specified for the end-effector, it
is necessary to assign the end-effector position as a
function of time. On the other hand, the joint space
denoted the space in the vector of the joint variables
(θ1, θ2 and θ3). Accounting for the dependence of
position from the joint variables, the forward

kinematics equation can be written in the form of Eq. 4
which is obtained from Eq. 3.

(4)

This expression shows three joint space variables

that allow specifications of at most three independent
operational space variables. On the other hand, the
orientation is not a concern, thus all joint angles can be
fully defined given a position of the end-effector.

2.3. Inverse Kinematics
The inverse kinematics problem consists of the

determination of the joint variables corresponding to a
given end-effector position. The solution to this
problem is of fundamental importance in order to
transform the motion specifications, assigned to the
end-effector in the operational space, into the
corresponding joint space motions that allow execution
of the desired motion. As mentioned above, the
manipulator is not a redundant structure, it is easy to
compute the closed-form solution for the inverse
kinematics based on Eq. 3. Therefore, the solution for
the inverse kinematics can be obtained as:

(5)

(6)

 (7)

2.4. Workspace
The workspace is the region described by the

origin of the end-effector frame when all the
manipulator joints execute all possible motions [3].
Since the manipulator has less than 6 degrees of
freedom (DOFs), it cannot take any arbitrary position
and orientation in space. Therefore, it is necessary to
compute its workspace to guarantee all the positions
along the path are reachable for the manipulator. In
order to simplify the calculation, we chose the end-
effector as the center of the third joint and the
workspace is shown as Fig. 2a.

Given a set of joint variables, the values of the
operational space variables deviate from those

41

computed via direct kinematics and the direct
kinematics equation is dependent on the DH
parameters by Eq. 4.

Figure 2. Workspace and velocity manipulability ellipsoids

2.5. Computation of the Jacobian Matrix

After establishing the relationship between the
joint variables and the end-effector position, we are
able to compute the differential kinematics to map the
joint angle velocities and the end-effector velocities.
Therefore, if the end-effector location is expressed with
the reference to a minimal representation in the
operational space, the Jacobian matrix can be computed
via differentiation of the forward kinematics function
with respect to the joint variables [1]:

(8)

Therefore, we are able to compute the general

version of the Jacobian matrix for our Lego arm and the
result shows as below:

(9)

2.6. Velocity Manipulability Ellipsoids
The evaluation of the manipulator is very helpful

for determining suitable manipulator postures to
execute a given task in the current configuration.
Therefore, it is necessary to compute the velocity
manipulability ellipsoids for all the configurations
during the task. This allows us to make sure that there
are no singular configurations, and more importantly, it
can help us to obtain an idea of the capability at the
end-effector for all configurations. Consider the set of
joint velocities of unit norm [3]:

(10)

this equation describes the points on the surface of a
sphere in the joint velocity space. Through the differ-
ential kinematics equation 4 solved for the joint
velocities, we can obtain that:

(11)

42

Figure 3. Motion of the robotic arm

For our Lego arm, since it is a nonredundant

manipulator, the points on the surface of the sphere in
the joint velocity space are mapped into the points on
the surface of the ellipsoid in the end-effector velocity
space as shown in Fig. 2b.

2.7. Simulink Programming

The Simulink model encompasses three motors
and six time signals. The motors are connected up and
work together in a time sequence in order for the 3R
Lego robot to work properly within the desired design
specifications. The entire robot ran for approximately
10 seconds allowing each motor to work independently
of each other. The motors were actuated at specific time
segments so that a smooth path trajectory was
accomplished. Three simulated signals of each motor
working independent of each other. Three blue signals
works together in time to actuate the arm motor. One
green signal is actuated to avoid an object during its
path. Two red signals are actuated to allow the end-
effector to grasp an object and set it back down. The
difficult part of programming the motors was to get the
motors to work in sequence. After one motor would
start the other motor would stop and start. To correct
this the global configuration of the motors had to be
looked at so that the motors functioned in sequence yet
independent of one another as shown in Fig 3a.

2.8. Trajectory Planning
Given an initial configuration and a final assigned

posture, we selected a path for the end-effector in the
operating space based on workspace and manipulability
ellipsoids analysis. We divided the motions into several
parts, including (1) reach an object, (2) pick up the
object, (3) lift the object, (4) avoid an obstacle, (5) place
the object back down and for each part, it lasts
approximately 2 seconds. By Eqs. 5, 6, 7, we are able to
solve the inverse kinematics for all configurations. The
cubic spline trajectory was chosen to plan the point to
point motion for each part of the motion. Based on the
inverse kinematics, each part of the motion only needs
one joint to move which simplifies the calculation. Fig.
3b shows the result for Part 1 of the motion, reaching
the object.

The position curve shows that the initial joint
angle is 90 degrees and the final joint angle is 0 degrees.
The arm starts from rest and end at rest.

2.9. Data Collection

An acceleration sensor was placed at the end-
effector and connected to port 1. The sampling rate we
set was 0.01 seconds. This allowed the sensor to collect
as much information as possible within the ten seconds
of running the actual program. This sensor provides
acceleration data within the x, y and z axes. The sensor
has an orientation so that the axis perpendicular to the

39

floor always shows the Earth’s gravitational
acceleration. When the sensor is at rest and in the
normal horizontal position, the x and y axis will be
approximately zero and the z axis will be about 200
counts. This corresponds to a value of 1 g. It was

necessary to convert counts to m/s
2

in order for the
data to coincide with the rest of our calculations.
Additionaly, the acceleration in the x, y and z axes was
used to calculate the tilt angle with respect to each axis.
Then, it was compared to the simulation results from
Matlab.

Additionaly, we used a gyroscope to collect the
angular velocity of the link of the robotic arm every 0.01
seconds. This gyroscope is capable of measuring the
angular velocity with respect to one axis at a time
within a range of -360 to 360 degrees. We set it up with
with an offset value of 588 to compensate for the
discrepancy from the zero degree/sec value when it was
at rest. The sensor was placed at the joint that controls
the up and down movement of the link. However, since
the robotic arm is not very sturdy and the sensor is very
sensitive, a post-processing step of the signal was
required to smooth it out. Yet, it shows the values
collected when the link was even vibrating. A
differentiation of the smoothed angular velocity was
performed to calculate the angular acceleration of the
robotic arm for the first 2 seconds of its trajectory.

3. Results

After a myriad of attempts, we successfully
programmed and discovered a worthy process for the
3R Lego robot. The path planned trajectory was
designed to specification and allowed for 5 basic steps
of the trajectory. This process was tested many times so
that the repeatability of the system could be
accomplished. The process required that the number of
degrees of freedom of the 3R Lego robot be fully utilized
in order to pick up an object, avoid an obstacle, and
place it back down. Outlined below is a successful
process of an iteration of the 3R Lego robot.

The acceleration sensor was used to measure the
actual acceleration at the end-effector. The sensor data
that was collected shows a linear acceleration at the
end-effector for 10 seconds of data collection. As the
motors are switching to perform different tasks, the
acceleration produces peaks and valleys in acceleration.
However, the sensor shows the acceleration due to
gravity for the z axis combined with the linear
acceleration of the object. One cannot distinguish the

actual acceleration in each axis when the sensor is being
rotated.

An advantage of having an accelerometer is that it
has high accuracy with our applications and is more
efficient to calculate the angular position of the end-
effector. A big disadvantage is that the sensor may not
be sufficient to obtain angular velocity and acceleration.

4. Conclusion

We have shown that a 3R Lego robotic arm can be
used to understand basic robotic concepts. A hands-on
approach was compared to theoretical results through
the use of Matlab and Simulink. An acceleration sensor
and a gyroscope were required to obtain the angular
distance, and the angular velocity and acceleration,
respectively. The use of each sensor have pros and cons
that were described in this paper. One way to obtain
cleaner velocity and acceleration data would be by the
integration of another acceleration sensor along the link
to use a differential acceleration process. Having more
accurate data is important for the calculation of forward
and inverse kinematics that will allow a better control
of the robotic arm.

Acknowledgments

The authors of this paper would like thank the Ira
A. Fulton Schools of Engineering at Arizona State
University for their support and funding of SHPE
(Society of Hispanic Professional Engineers) de ASU
Robotics. Without their funding, purchasing the Lego
Robotics kits that were used would not have been
possible and much of the research done could not have
been completed.

References
[1] Niku, S. B. (2001). An Introduction to Robotics

Analysis, Systems, Applications. NJ: Prentice Hall
[2] Spong, M., Hutchinson, S. and Vidyasagar, M. (2006).

Robot modeling and control. NY: John Wiley &
Sons.

[3] Sciavicco, L. and Siciliano, B. (2000). Modelling and
control of robot manipulators. NY: Springer.

[4] Rajeevlochana, C.G., and Saha, S.K. (2011).
RoboAnalyzer: 3D Model Based Robotic Learning
Software. International Conference on Multi Body
Dynamics, 3-13.

[5] Rajeevlochana, C. G., Jain, A., Shah, S. V., and Saha, S.
K. (2011). Recursive Robot Dynamics in RoboAn-
alyzer. 15th National Conference on Machines and
Mechanisms (NaCoMM), 482-490.

40

[6] Bahuguna J., Chittawadigi R. G., and Saha, S. K.
(2013.) Teaching and Learning of Robot
Kinematics Using RoboAnalyzer Software.
Advances in Robotics.

[7] Jaramillo-Botero, A., Matta-Gomez, A., Correa-
Caicedo, J. F. and Perea-Castro, W. (2006).
ROBOMOSP. Robotics & Automation Magazine,
IEEE, 13(4), 62-73.

[8] RoboWorks Software. Newtonium Web site.
Retrieved from
http://www.newtonium.com/

[9] Easy-ROB3D Software. Easy-ROB Web site. Retrieved
from
http://www.easy-rob.com/

[10] Toz, M., Kucuk, S. (2010). Dynamics Simulation
Toolbox for Industrial Robot Manipulators.
Computer Applications in Engineering Education,
18(2), 319-330.

[11] Hayat, A. A., Chittawadigi, R. G., Udai, A. D., and
Saha, S. K. (2013). Identification of Denavit-
Hartenberg Parameters of an Industrial Robot.
AIR’13 Proceedings of Conference on Advances In
Robotics, 1-6.

[12] Gonzalez-Palacios M. A., Gonzalez-Barbosa, E. A.,
Aguilera-Cortes, L. A. (2013). SnAM: a simulation
software on serial manipulators. Engineering with
Computers, 29, 87-94.

[13] Behrens et al. (2010). MATLAB Meets LEGO
Mindstorms-A Freshman Introduction Course
Into Practical Engineering. IEEE Trans. on
Education, 53(2), 306-317.

[14] Green, A. (2013). LEGO Robotics in STEM
Education. D&T Practice, 1, 22-24.

[15] A. Cruz-Martin et al. (2012). A LEGO Mindstorms
NXT approach for teaching at Data Acquisition,
Control Systems Engineering and Real-Time
Systems undergraduate courses. Computers and
Education, 59, 974-988.

[16] Y. Kim. (2011). Control Systems Lab Using a LEGO
Mindstorms NXT Motor System. IEEE Trans. on
Education, 54(3), 452-461.

[17] A. Valera et al. (2011). Design and Implementation
of Kalman Filters applied to Lego NXT based
Robots. Preprints of the 18th IFAC World Congress,
9830-9835.

[18] Ferri, B. H. et al. (2009). Signal Processing
Experiments with the LEGO MINDSTORMS NXT
Kit for Use in Signal and Systems Courses.
American Control Conference, 3787-3792.

[19] Hamori, A., Lengyel, J. and Resko, B. (2011). 3DOF

drawing robot using LEGO-NXT. 15th
International Conference on Intelligent
Engineering Systems (INES), 293-295.

[20] Moral, J. A. B. (2009). Develop lejos programs step
by step. Retrieved from
 www.juanantonio.info

[21] Nee, Y. Y. (2007). ROBOTIC ARM SYSTEM BY USING
LEGO MINDSTORMS (Unpublished dissertation).
Universiti Teknikal Malaysia Melaka, Malaysia.

[22] Corke, P.I. (2011). Robotics, Vision & Control.
Springer.

[23] Ljung, L. (1999). System Identification, Theory for
the User. NJ: Prentice Hall.

[24] Golnaraghi, F., Kuo, B. C. (2009). Automatic Control
Systems. NY: WILEY.

[25] Nocedal, J., Wrigth, S. (2006). Numerical
Optimization. NY: Springer.

